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1. Introduction

Double-logarithmic (DL) contributions were discovered in ref. [1] in the QED context and

since that have become a popular object of theoretical investigations. On one hand, DL

terms are among the most sizable radiative corrections in each order of the field theories

at high energies. On the other hand, the ways to select the Feynman graphs yielding DL

terms, the means to calculate DL contributions and the methods of all-order summations

first developed in ref. [2] converted earlier examples of DL calculations into the regular

technique that allows to account for DL radiative corrections in a quite efficient and simple

way. With certain technical modifications, especially non-trivial for inelastic processes, the

general prescriptions of calculating DL asymptotics elaborated in ref. [2] were generalized
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to QCD and the Standard Model of the electro-weak interactions at TeV energies where

the total energy
√

s ≫ MW,Z . As for the electro-weak (EW) double-logarithms, quite often

in the literature they are accounted in fixed orders in the EW couplings.1 Ref. [4] proved

the exponentiation of the soft EW DL contributions. Such an exponentiation takes place

for electro-weak reactions in the hard kinematics. The more involved Regge kinematics

was studied in refs. [5, 6]. One of the most essential difference between EW and other DL

calculations is the fact that the gauge symmetry of the EW interactions is partly broken

and the set of the EW bosons includes the massless (photons) and massive (W,Z) particles.

The DL contributions involving soft photons are infrared-divergent and are regulated with

the infrared cut-off µ exactly as in QED. The value of µ is fixed in final formulas with

physical considerations. DL contributions involving soft W,Z-bosons are infrared-stable

and contain, instead of µ, the boson masses MW , MZ . The difference between MW and

MZ can be neglected with the DL accuracy. It makes possible to use the second cut-off, M

(with M > MW ≈ MZ) instead of MW , MZ in the DL contributions involving virtual W

and Z -bosons. This approximation considerably simplifies all-order summations of EW

double-logs. Another interesting topic is the interplay between the QCD and EW double-

logarithmic contributions. For the 2 → 2 scattering in the hard kinematics it has recently

been considered in ref. [7] where the impact of the first-loop EW double-logarithmic terms

on the elastic 2 → 2 hadronic reactions (≡ EW impact) was estimated as large as 10%

at energies
√

s ∼ 500 GeV. Later, the role of sub-leading contributions was discussed in

ref. [8]. In DL approach we get that the EW impact should not be neglected, however the

EW impact on the elastic QCD scattering amplitudes in the first loop appears to be smaller:

it is approximately 3.5% at
√

s . 1 TeV. On the other hand, the total resummation of the

EW DL contributions to the elastic scattering 2 → 2 amplitudes increases the EW impact

compared to the first-loop estimate: the impact comes to be about 10% at
√

s = 1 TeV and,

growing fast with
√

s, it reaches 30% at
√

s = 10 TeV. The EW impact on the amplitudes

of the inelastic 2 → 2 + n -scattering of quarks can be estimated similarly. The explicit

expressions for such amplitudes in QCD were obtained in ref. [9] and the generalization to

the electroweak processes can be found in ref. [10].

In contrast to the exclusive processes, the interplay between EW and QCD double-

logarithmic radiative corrections to the inclusive reactions has not been considered in the

literature. One of interesting subjects here would be considering the EW impact on the

structure functions of the Deep-Inelastic Scattering (DIS). It is clear that the EW impact

on the singlet structure functions (especially on the singlet spin-independent functions

F1,2) cannot be large because the leading contributions to the singlets come from the gluon

ladder graphs and gluons do not participate in the EW interactions. On the contrary,

considering the EW impact on the non-singlet structure functions, where the quark ladder

graphs yield main contributions, could be quite interesting. Indeed, the EW corrections

depend on the flavors of the involved quarks, so accounting for these EW corrections in

DLA together with the QCD background can bring qualitatively new phenomena. In order

1To our knowledge, one of the earliest calculations of EW double-logarithms in the first loop was done

in ref. [3].
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to see it, let us consider the flavor non-singlet contributions to the DIS structure functions

F1 (it describes the unpolarized DIS) and g1 (describing the polarized DIS). Both of them

are the flavor-depended contributions to the inclusive cross sections of the DIS and often

addressed as the non-singlet structure functions f (+)(x,Q2) and f (−)(x,Q2) respectively.

As is well-known, the expressions for f (±)(x,Q2) include the initial quark densities δq,

with δq = δu, δd, the anomalous dimensions (to describe the Q2- evolution of the initial

quark densities, converting them into the evolved quark distributions) and the coefficient

functions (to describe the x -evolution of the evolved distributions). When calculated in

the QCD framework, f (±)(x,Q2) for the u- quark and d- quark coincide, save difference

between e2
uδu and e2

dδd: the quark-gluon interactions do not depend of flavors of the quarks.

Electroweak corrections to f (±) bring more difference: they cause a difference in the x and

Q2 -evolutions of the initial quarks and split f (±) into f
(±)
u and f

(±)
d (the subscripts u, d

label the initial quark flavors). The difference in the evolutions of u and d -quarks means

that f
(±)
u 6= f

(±)
d even if e2

uδu = e2
dδd. Impact of the electromagnetic ∼ O(α) corrections

was studied in ref. [11] where DGLAP evolution equation [12] was used for accounting for

the QCD corrections. However, DGLAP does not include resummation of the DL terms

∼ αk
s ln2k(1/x) and the single-logarithmic (SL) terms ∼ αk

s lnk(1/x). The point is that

DGLAP was originally suggested for operating within the region of large x where both the

double- and single- logarithms of x could easily be neglected in higher loops. Accounting

for them to all orders in αs becomes necessary in the small-x region. DGLAP lacks the

resummation, so the extrapolation of DGLAP into the small-x region involves introducing

the singular fits for δq with many phenomenological parameters (see e.g. ref. [13]) but

suggests no theoretical explanations why δu and δd should be singular. In fact, the only role

of the singular terms in the fits is to mimic the total resummation of the leading logarithms

of x (see ref. [14] for more detail). When the resummation is taken into account, the singular

factors should be dropped and therefore the fits can be simplified. On the other hand, the

total resummation of the EW DL contributions to f (±) makes possible to estimate their

impact on the small-x behavior of the non-singlets. In doing so, we follow the approach of

refs. [15, 5, 6]. Through the paper we neglect the running effects for the EW couplings.

The present paper is organized as follows: in section 2 we briefly remind the results of

ref. [15] for the non-singlet structure functions f (±) in QCD. The expressions for them are

obtained as the solutions of the Infrared Evolution Equations (IREE). In the present paper

we do not derive the IREE as this procedure can easily be found in ref. [15]. Instead, we

demonstrate how the QCD-results enlisted in section 2 can be generalized to account for

the EW double-logarithms. In order to do it in the simplest way, in section 3 we first extend

the QCD results for f (±), adding the electromagnetic DL corrections to the QCD results of

section 2. After that in section 4 we obtain the system of IREE where all electroweak DL

corrections are taken into account. The evolution equations for f
(±)
u and f

(±)
d involve eight

anomalous dimensions instead of two in QCD. They account for the total resummation of

the QCD and EW- double-logarithms. We find them again with composing IREE. Those

IREE are obtained and solved in section 5. Besides the anomalous dimensions, expressions

for f
(±)
u,d include coefficient functions. In order to specify them we use the matching between

– 3 –
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f
(±)
u and new amplitudes f̃

(±)
u describing the same process, however at small Q2. They have

to be calculated independently. We do it in section 6, once more with composing and solving

IREE. It makes possible to obtain explicit expressions for fu,d first in the Mellin (momen-

tum) space in section 7 and then in the conventional form in section 8. In section 9 we con-

sider the small-x asymptotics of the non-singlet structure functions and estimate the impact

of the EW corrections on the non-singlet intercepts. Section 10 is for concluding remarks.

2. Non-singlet structure function at small x in the QCD framework

The term ”non-singlet structure functions” stands for flavor-dependent contributions to DIS

structure functions. Usually, DIS structure functions are calculated with using the DGLAP

evolution equations. As is known, DGLAP accounts for logarithms of Q2 to all orders in

the QCD coupling αs and at the same time lacks the total resummation of Double- and

Single logarithms (DL and SL respectively) of x. Such contributions are important at small

x. The total summation of them, including the running coupling effects, was performed in

refs. [15] with composing and solving the Infra-Red Evolution Equations (IREE). We will

use this approach in the present paper in order to account for EW DL contributions, so we

briefly remind below of the QCD results for the non-singlet structure functions. In order

to make clear the fact that we discuss in this section only the QCD content of the non-

singlet structure function, we will use the subscript ”QCD” where it is necessary. Usually,

notations (like fNS) for the non-singlet structure functions bear the subscript ”NS” but as

through the paper we discuss the non-singlets only, we do not write the subscript ”NS”.

We denote f (+) the non-singlet contribution to the unpolarized structure function F1 and

use the notation f (−) for the non-singlet contribution to the spin structure function g1. As

is known, the latter coincides with the structure function f3. Technically, it is convenient

to introduce the forward Compton amplitudes T (±)(s,Q2) related to f (±) by the Optical

theorem:

f (±)(x,Q2) =
1

π
ℑT (±)(s,Q2) (2.1)

where we have used the standard notations: q is the momentum of the incoming virtual

photon, p is the incoming quark momentum, Q2 = −q2, x = Q2/2pq, s = (p + q)2 ≈ 2pq

when x ≪ 1. The superscripts ” ± ” in eq. (2.1) manifest that amplitudes T (±) have the

signatures ±. It means that they are defined as follows:

T (±) =
1

2
[T (s,Q2) ± T (−s,Q2)] . (2.2)

Using the signature amplitudes at high energies is absolutely necessary from the point of

view of the phenomenological Regge theory and at the same time it is convenient technically

(see e.g. ref. [15] for detail). Accounting for the summation of the DL contributions ∼
(αs ln2(1/x))k , (k = 1, . . .) makes necessary introducing an infrared cut-off µ. For the sake

of simplicity we identify it with the starting point of the Q2-evolution, though it is not

necessary. Therefore, both T (±) and f (±) depend on µ as well. It is convenient (see ref. [15]

for detail) to use an integral transform to represent f (±) and T (±). The Regge pole theory
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suggests that it should be the Sommerfeld-Watson transform. At s → ∞ one can use its

asymptotic form that looks quite similarly to the Mellin transform:

T (±) =

∫ ı∞

−ı∞

dω

2πı

(
s

µ2

)ω

ξ(±)(ω)F (±)(ω, y) (2.3)

where the signature factors

ξ(±) = [e−ıπω ± 1]/2 ≈ [1 ± 1 − ıπω]/2 . (2.4)

We have used here that due to oscillations of the factor (s/µ2)ω, the main contribution in

eq. (2.3) comes from the region of small ω. As eq. (2.3) partly coincides with the standard

Mellin transform, it is often addressed as the Mellin transform and we will do the same

through this paper. Nevertheless, we will use the transform inverse to eq. (2.3) in its proper

form:

F (±)(ω, y) =
2

πω

∫
∞

0
dρe−ωρℑT (±)(ρ, y) (2.5)

where we have introduced two new convenient variables ρ = ln(s/µ2) and y = ln(Q2/µ2)

and also used that ω in eq. (2.5) are small. Obviously, eq. (2.5) does not coincide with the

standard Mellin transform. Substituting eq. (2.3) into eq. (2.1), we express the non-singlets

f (±) through F (±)(ω):

f (±) = (1/2)

∫ ı∞

−ı∞

dω

2πı

(
s

µ2

)ω

ωF (±)(ω, y) . (2.6)

Evolving amplitudes T (±) with respect to µ allows one to compose IREE for them. It was

shown in ref. [15] that in the QCD framework the forward Compton amplitudes T (±) obey

the following equation:

T (±) = T
(±)
Born + M

(±)
0 ⊗ T (±) (2.7)

where T
(±)
Born is T (±) in the Born approximation, M

(±)
0 are amplitudes of the forward quark-

quark scattering. They should be calculated independently. After differentiating eq. (2.7)

with respect to µ and applying the Mellin transform, eq. (2.7) converts into the following

equation in terms of F
(±)
QCD(ω, y):

(ω + ∂/∂y)F
(±)
QCD = [1 + ω/2]H

(±)
QCD(ω)F

(±)
QCD . (2.8)

The Born term T
(±)
Born does not depend on µ and vanishes after the differentiation. The

term ω/2 in eq. (2.8) describes the single-logarithmic contribution. As our aim is studying

DL contributions, we will neglect such SL contributions through the paper, though we will

keep αs running. H
(±)
QCD(ω) in eq. (2.8) are related to amplitudes M

(±)
0 through the Mellin

transform. They are new anomalous dimensions. They include the total resummation of

DL and SL QCD contributions. IREE for H
(±)
QCD is obtained in ref. [15]. When the SL

terms that do not contribute to αs are neglected, the IREE for H
(±)
QCD is

ωH
(±)
QCD =

b
(±)
QCD

8π2
+

(
H

(±)
QCD

)2
(2.9)
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where

b
(±)
QCD = aQCD + D

(±)
QCD , (2.10)

with

aQCD = 4πA(ω)CF , A(ω) =
1

b

[
η

η2 + π2
−

∫
∞

0

dρe−ωρ

(ρ + η)2 + π2

]
(2.11)

and

D
(±)
QCD(ω) =

(
− CF

2N

)
(−4)

∫
∞

0
dρe−ωρ ℜ[αs(s) ∓ αs(−s)]

∫ s

µ2

dk2
⊥

k2
⊥

αs(k
2
⊥) . (2.12)

Performing integration over k2
⊥

in eq. (2.12), we obtain the following expression for

D(±)(ω)QCD:

D
(±)
QCD(ω) =

2CF

b2N

∫
∞

0
dρe−ωρ ln

(
ρ + η

η

)[
ρ + η

(ρ + η)2 + π2
∓ 1

ρ + η

]
. (2.13)

In eqs. (2.11), (2.13) ρ = ln(s/µ2), η = ln(µ2/Λ2
QCD) , and we have used the standard

notations: CF = (N2 − 1)/2N = 4/3 and b is the first coefficient of the Gell-Mann-Low

function.

Eqs. (2.7)–(2.13) were obtained and discussed in detail in ref. [15], so in the present

paper we do not derive them. Instead, we show in next sections how to extend the QCD

results, eqs. (2.7)–(2.13), to the Standard Model of electroweak interactions. Nevertheless,

let us briefly comment on them. The term aQCD/ω in eqs. (2.8), (2.10) is the Born con-

tribution to the amplitudes of the forward quark-quark scattering, so that A(ω) is related

to αs through the Mellin transform of eq. (2.5). The DGLAP- parametrization prescribes

that αs = αs(k
2
⊥
). As shown in ref. [17], this parametrization should be used at large

x only. At the small-x region αs in each rung depends rather on the horizontal gluon

virtuality than on k⊥ of the quarks. Such virtualities are time-like, so they participate

in the Mellin transform and as a consequence, ℑαs and ℜαs acquire the π2 -terms ap-

peared in eqs. (2.11)–(2.13). The Born contribution is absent in eq. (2.8) because it does

not depend on µ and therefore vanishes under differentiation over µ. The second term,

D(ω) in eq. (2.10) represents the approximative DL contribution of non-ladder Feynman

graphs2 when the s and u -channel gluons with small transverse momenta are factorized

so that their propagators are attached to the external quark lines (see ref. [15] for detail).

Such terms are absent in eq. (2.8) because gluon propagators cannot be attached to the

photon lines. The last term in the both eqs. (2.8), (2.9) corresponds to the case when

a t -channel intermediate quark-antiquark pair factorizes amplitude T into a convolution

of two on-shell amplitudes. When αs is kept fixed, A(ω) is replaced by αs and D
(±)
QCD of

eq. (2.13) is changed to3

D̃
(±)
QCD =

(
− CF

2N

)(
− 4α2

s

ω2

)
[1 ∓ 1] . (2.14)

2Through this paper we use the Feynman gauge.
3The sign of eq. (31) in ref. [15] is wrong, however this misprint does not affect the results of the paper.
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The relation D̃
(+)
QCD = 0 means that DL contributions of the non-ladder Feynman graphs

cancel each other in expressions for the forward scattering amplitudes with the positive

signatures. It was first noticed in ref. [18] in the QED context and remains true in QCD

when αs is fixed. According to eq. (2.13), accounting for the running αs effects violates it.

The expression (2.14) for D̃
(−)
QCD (as well as eq. (2.12) for D

(±)
QCD) consists of two factors (each

in the brackets). The first factor (−CF /2N) comes from simplifying the color structure

tatbtatb of the involved graphs (ta,b are the SU(3)-generators) whereas the second factor

comes from integration over momenta of the virtual partons. The terms in squared brackets

in eq. (2.13) correspond to [αs(s)±αs(−s)] and the logarithm in that equation corresponds

to integral of αs(k
2
⊥
)/k2

⊥
. We ought to draw attention that the definition of DQCD in

eq. (2.13) differs from the definition of D in ref. [15]: DQCD = ωD. Solution to eq. (2.9) is

H
(±)
QCD =

ω −
√

ω2 − B
(±)
QCD

2
, (2.15)

with

B
(±)
QCD = 4b

(±)
QCD/(8π2) = [4πACF + D(±)]/(2π2) . (2.16)

Similarly to the DGLAP equations, the general solution to eq. (2.8) predicts the Q2-

dependence of the non-singlets. In order to fix their x-dependence, the general solutions

should be specified. In other words, the coefficient functions should be found. In order to

do it, we use (see ref. [15]) the matching

F
(±)
QCD(ω, y)|y=0 = F̃

(±)
QCD(ω) , (2.17)

with F̃
(±)
QCD corresponding to the DIS off a nearly on-shell photon (with Q2 = µ2), i.e. in

the kinematics where the Q2-dependence is neglected. Obviously, F̃
(±)
QCD coincide with the

non-singlet coefficient functions in the ω-space. We calculate them again with composing

new IREE (cf eq. (2.8)):

ωF̃
(±)
QCD = e2

qδq(ω) + H
(±)
QCDF̃

(±)
QCD (2.18)

where eq is the electric charge of the initial quark and δq(ω) is the initial quark density in

the ω -space. In contrast to eq. (2.8), there is the Born contribution in the rhs of eq. (2.18)

because in this case we keep Q2 ∼ µ2, so the Born term depends on µ and does not vanish

when differentiated with respect to µ.

Eventually we arrive at the final formula for the non-singlet structure functions f
(±)
QCD

in QCD:

f
(±)
QCD =

e2
Q

2

∫ ı∞

−ı∞

dω

2πı

(
1/x

)ω ω

ω − H
(±)
QCD

δq eyH
(±)
QCD . (2.19)

Although eq. (2.19) is obtained for Q2 ≫ µ2, the shift Q2 → Q2 + µ2 generalizes eq. (2.19)

to the small-Q2 region (see ref. [16] for detail). The small-x asymptotics of f
(±)
QCD is

f
(±)
QCD ∼ (1/x)∆

(±)
QCD (2.20)
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where ∆
(±)
QCD are called the intercepts. Straightforwardly they can be found with applying

the saddle-point method to eq. (2.19). The shorter way is to solve the equation

ω2 − B
(±)
QCD = 0 (2.21)

for the leading singularity position and to choose its largest root. The root corresponds to

the rightmost singularity of eq. (2.19). Ref. [15] reads that ∆
(+)
QCD = 0.39 and ∆

(−)
QCD = 0.42.

3. Electromagnetic DL corrections to the non-singlet structure functions

As exchanges of virtual gluons cannot be isolated from the virtual photon exchanges, it

is necessary to add the electromagnetic (EM) DL contributions to the QCD expression of

eq. (2.19) for the non-singlet structure functions. Generalization of eq. (2.8) for amplitudes

T (±) to account for exchanges of virtual gluons and photons can be done in a very simple

way: with replacing H
(±)
QCD by new non-singlet anomalous dimensions h

(±)
EM accounting for

both EM and QCD DL contributions. The IREE for h
(±)
EM is similar to eq. (2.9):

ωh
(±)
EM(ω) =

bEM

8π2
+ (h

(±)
EM(ω))2 . (3.1)

It changes eq. (2.19) for a quite similar expression

f
(±)
EM =

e2
q

2

∫ ı∞

−ı∞

dω

2πı

(
1/x

)ω ω

ω − H
(±)
EM

δq eyH
(±)
EM (3.2)

where new anomalous dimension H
(±)
EM sums the both QCD and EM double logarithms. It

also looks like H
(±)
QCD:

H±

EM =
ω −

√
ω2 − B

(±)
EM

2
, (3.3)

Similarly to eq. (2.16), B
(±)
EM is expressed through b

(±)
EM:

B
(±)
EM = b

(±)
EM/(2π2) . (3.4)

Now let us specify b
(±)
EM:

b
(±)
EM = b

(±)
QCD + aγ + D

(±)
EM (3.5)

where aγ is the electric charge of the quark:

aγ = e2
q = 4παQ2

q (3.6)

and

D
(±)
EM = D(±)

gγ + D(±)
γg + D(±)

γγ , (3.7)

with

D(±)
gγ = −

4αQ2
qCF

b
[1 ∓ 1]eωη

∫
∞

−1
dte−ωηt ln t , D(±)

γγ = −
4α2Q4

q[1 ∓ 1]

ω2
, (3.8)

D(±)
γg = −

4αQ2
qCF

b

∫
∞

0
dρe−ωρ

[
ρ(ρ + η)

(ρ + η)2 + π2
∓ ρ

ρ + η

]
.
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When αs is fixed, the expressions for D
(±)
gγ and D

(±)
γg become more simple:

D(±)
gγ = D(±)

γg = −
4αQ2

qαsCF

ω2
[1 ∓ 1] . (3.9)

Let us explain how D
(±)
ik of eq. (3.8) can be obtained from the QCD expressions for D

(±)
QCD

in eq. (2.12), (2.14). Eq. (2.12) reads that D
(±)
QCD contains the QCD couplings depending

on different arguments.

(a) There is α(k2
⊥
) that comes when the soft virtual gluon with momentum k2 ≈ −k2

⊥
is

coupled to quarks.

(b) There is the sum [αs(s)∓αs(−s)] from the hard virtual gluon coupled to the quarks. In

D
(±)
γg and D

(±)
gγ one of the gluons is replaced by the photon with the same momentum.

In contrast to αs, we treat α as fixed: α = 1/137 .

Therefore, when the soft gluon is replaced by the soft photon, α(k2
⊥
) in eq. (2.12)

should be replaced by αQ2
q and we arrive at D

(±)
γg . Instead, when the hard gluon is

replaced, [αs(s) ∓ αs(−s)] should be replaced by αQ2
q [1 ∓ 1], the remaining integration

over k2
⊥

can easily be done and we obtain D
(±)
gγ . At last, combining both previous cases

leads us to D
(±)
γγ where the both gluons are replaced by photons. This case is similar to

eq. (2.14), save the color factor −CF /(2N). Obviously, the replacements the gluons by

photons change the two-gluon color factor tatbtatb = −CF /(2N) for either tata = CF (for

D
(±)
γg and D

(±)
gγ ) or 1 (for D

(±)
γγ ).

In the QCD framework, the only difference between the small-x behavior of f
(±)
u (for

up-quarks) and f
(±)
d (for down-quarks) is the difference between the initial quark densities

δu and δd whereas both the x and Q2 -evolutions of the initial up- (u) and down- (d)

quark are identical, so the subscripts u and d at f
(±)
u,d are often dropped. Accounting

for EM contributions brings a difference of the both evolutions on the flavor. To mark

this difference, we introduce the non-singlet structure functions, f
(±)
u and f

(±)
d , with the

subscripts showing the flavor of the initial quark. Obviously, f
(±)
u 6= f

(±)
d even if δu = δd.

As could be well-expected, eq. (3.2) shows that the impact of EM correction on the small-x

behavior of f (±) is very small. Indeed, the estimate of the impact ǫEM of the EM corrections

on the intercepts is:

ǫ
(+)
EM =

∆
(+)
EM − ∆

(+)
QCD

∆
(+)
QCD

≈ ǫ
(−)
EM =

∆
(−)
EM − ∆

(−)
QCD

∆
(−)
QCD

≈ 1%. (3.10)

4. Inclusion of electroweak DL contributions

In order to include into consideration all electroweak DL contributions, adding to the gluon

and photon exchanges, the W and Z -exchanges, we should modify the method that we

used in the previous sections by the following reasons:

– 9 –



J
H
E
P
0
4
(
2
0
0
8
)
0
6
8

(i) As the gauge group of the electroweak interactions is broken and electroweak bosons

become massless photons and massive W,Z -bosons, the non-singlet structure func-

tions acquire dependence on the both µ and MW,Z .

(ii) W -exchanges cause mixing of u and d -quarks, so IREE for f
(±)
u and f

(±)
d together

with IREE for the anomalous dimensions, are not separable (as in QCD).

Before composing the IREE, let us introduce necessary notations. We use the notation

gW for the W -coupling to quarks. It does not depend on the quark flavor. On the contrary,

both the photon coupling eq and the Z -boson coupling gqZ to quarks are flavor-dependent.

All these coupling are expressed through the SU(3) Standard Model coupling g and the

Weinberg angle θ:

guW = gdW ≡ gW = g/
√

2 , eq = g sin θW Qq = g sin θW (T3 + Y/2) , (4.1)

gqZ = (g/ cos θW )(T3 − Qq sin2 θW ) = (g/ cos θW )(T3 cos2 θW − (Y/2) sin2 θW ) .

We keep through the paper the standard notations T3, Y and Q for the isospin, hypercharge

and electric charge of quarks together with the standard relation Q = T3+Y/2. We simplify

the MW,Z -dependence of the non-singlets, assuming that in the logarithmic expressions

MW ≈ MZ = M . (4.2)

Again, it is convenient to introduce the Compton amplitudes T
(±)
u , T

(±)
d related to the

non-singlet structure functions by eq. (2.1). We will address them as the forward Compton

amplitudes, although at energies
√

s ≫ MW,Z and Q2 & M2
W,Z the lepton and hadron par-

ticipating in the DIS can exchange with γ, Z (neutral lepton currents) and W (charged lep-

ton currents). In order to avoid overloading the paper we consider only the case of small Q2:

Q2 ≪ M2
W,Z (4.3)

where the photon exchange between the lepton and quarks prevails. The other cases

can be considered quite similarly. Under the approximation of eq. (4.2), the non-singlet

functions f
(±)
u,d and the Compton amplitudes T

(±)
u,d depend on s,Q2 and the mass scales µ

and M . We assume the following relations between the parameters s, Q2, M2 , µ2:

s ≫ M2 & Q2 ≫ µ2 . (4.4)

It is convenient to introduce the amplitudes F
(±)
u,d (ω, y, z) related to amplitude T

(±)
u,d

similarly to eq. (2.6):

T
(±)
u,d =

∫ ı∞

−ı∞

dω

2πı

(
s

µ2

)ω

ξ(±)(ω)F
(±)
u,d (ω, y, z) (4.5)

where new variable z is introduced: z = ln(M2/µ2) . In accounting for DL contributions,

µ acts as an infrared cut-off for DL terms involving soft gluons and photons whereas M

acts as the second cut-off when DL terms involving soft W,Z -bosons are considered.

In contrast to the considered above QCD and EM cases, IREE for F
(±)
u,d (ω, y, z) involve
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the matrix of new anomalous dimensions h
(±)
ik , with i, k being = u, d, and involve the

derivatives with respect to y and z:

(ω + ∂/∂y + ∂/∂z)F (±)
u = h(±)

uu (ω, z)F (±)
u + h

(±)
ud (ω, z)F

(±)
d , (4.6)

(ω + ∂/∂y + ∂/∂z)F
(±)
d = h

(±)
du (ω, z)F (±)

u + h
(±)
dd (ω, z)F

(±)
d .

The anomalous dimensions h
(±)
ik should be calculated independently. After they have been

found, it is possible to find general solutions to eqs. (4.6). In order to specify them, i.e. to

find new coefficient functions, we will follow the same use the matching

F
(±)
u,d (ω, y, z)|y=0 = F̃

(±)
u,d (ω, z) (4.7)

with the amplitudes F̃
(±)
u,d (ω, z). They describe the forward Compton scattering, with the

EW DL corrections accounted for, in the case when the external photon has the virtuality

∼ µ2, i.e. almost on-shell. F̃
(±)
u,d should be found independently (cf eq. (2.17)). So, before

solving eqs. (4.6) we should find h
(±)
ik and F̃

(±)
u,d . On this step we are going to simplify our

notations. Trough the paper we keep the DL accuracy. It gives us the right to neglect

terms mixing amplitudes with different signatures. Therefore, all IREE we compose are

separable in the signatures (see eqs. (2.8), (2.9) and eqs. (4.6), (A.1)). So, in what follows

we basically drop the signature superscripts ”(±)” but restore them when it is necessary.

5. Electroweak anomalous dimensions hik

Now let us focus on obtaining explicit expressions for hik. We will do it with obtaining

and solving appropriate IREE. In subsection A we compose IREE for hik. In contrast to

the QCD -case, they are partial differential equations. The general solutions to them are

found in subsection B and are specified in subsection C.

5.1 IREE for the anomalous dimensions hik

In our approach, in contrast to DGLAP, the anomalous dimensions can be found with

composing and solving appropriate IREE for them. Equations for hik can be obtained as

a generalization of eq. (3.1):

(
ω + ∂/∂z

)
huu = bEM

uu /(8π2) + h2
uu + hudhdu ,

(
ω + ∂/∂z

)
hud = bEM

ud /(8π2) + huuhud + hudhdd ,
(
ω + ∂/∂z

)
hdu = bEM

du /(8π2) + hduhuu + hduhdd ,
(
ω + ∂/∂z

)
hdd = bEM

dd /(8π2) + h2
dd + hudhdu . (5.1)

The electromagnetic terms bEM
uu and bEM

dd in eq. (5.1) are actually defined in eq. (3.5):

bEM
uu = bQCD + aEM

uu + DEM
uu , bEM

dd = bQCD + aEM
dd + DEM

dd , bEM
ud = bEM

du = 0 (5.2)

where

aEM
uu = 4παQ2

u , aEM
dd = 4παQ2

d (5.3)
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and DEM
uu ,DEM

dd can similarly be taken from eqs. (3.7), (3.8), replacing Qq by Qu and Qd

respectively. We remind that we have dropped the signature superscripts ”±” for the sake

of simplicity. The fact that bEM
du =EM

ud = 0 simplifies the system in eq. (5.1). It is convenient

to re-write eq. (5.1) in terms of symmetrized combinations hS,A and bEM
S,A defined as follows:

hS = huu +hdd , hA = huu−hdd , bEM
S = bEM

uu +bEM
dd , bEM

A = bEM
uu −bEM

dd , (5.4)

and to introduce h:

h = −ω + hS . (5.5)

In these terms eq. (5.1) takes the simpler form:

∂h

∂z
= bEM

S /(8π2) +
1

2
h2 +

1

2
h2

A − ω2

2
+ 2hudhdu , (5.6)

∂hA

∂z
= bEM

A /(8π2) + hAh ,
∂hud

∂z
= hudh ,

∂hdu

∂z
= hudh .

Eq. (5.6) reads that hud = hdu .

5.2 General expressions for hik

Eqs. (5.1), (5.6) for hik are non-linear,so solving them exactly is a quite serious technical

problem. We do not pursue this aim in the present paper. Instead, we suggest an approx-

imative procedure based on the obvious fact that the QCD coupling is greater than the

electroweak ones. It means that in eqs. (5.1), (5.6)

bEM
S ≫ bEM

A , bud , bdu . (5.7)

Then, eq. (5.7) allows to conclude that

hS ≫ hA , hud , hdu . (5.8)

Using this relation, we can neglect h2
A and hudhdu compared to h2

S in the rhs of the first of

equations eqs. (5.6) and write an approximation for eqs. (5.6):

∂h

∂z
=

bEM
S

8π2
− ω2

2
+

1

2
h2 ,

∂hA

∂z
=

bEM
A

8π2
+ hAh , (5.9)

∂hud

∂z
= hudh ,

∂hdu

∂z
= hudh .

The first of eqs. (5.9) is the Riccatti equation and the others are linear, so they can be

easily solved. The general solution for hS can be written as

hS(ω, z) = ω + λ
1 + CSeλz

1 − CSeλz
, hud = hdu = Cud exp

∫ z

0
dth(ω, t) , (5.10)

hA =

[
bEM
A

8π2

∫ z

0
dt exp

(
−

∫ t

0
dt′h(ω, t′)

)
+ CA

]
exp

∫ z

0
dth(ω, t) ,

with λ =
√

ω2 − 2bEM
S /(8π2) . CS , CA(ω) and Cud(ω) being an arbitrary functions of ω.

They have to be specified. We do it, invoking the matching

hik(ω, z)|z=0 = Hik(ω) (5.11)
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where Hik(ω) are the auxiliary anomalous dimensions corresponding to the unbroken elec-

troweak symmetry where that W,Z -bosons are massless, so the cut-off µ is applied to all

virtual bosons. These anomalous dimensions account for the total resummation of EW

and QCD double-logarithms and have to be calculated independently. Using the matching

of (5.11) for hik(ω, z) in eqs. (5.10), we express the unknown functions CS, CA, Cud in

terms of Hik:

CS = −(λ − H)/(λ + H) , CA = HA , Cud = Hud (5.12)

where similarly to eqs. (5.4), (5.5) we have denoted

H = −ω + HS, HS = Huu + Hdd, HA = Huu − Hdd . (5.13)

Explicit expressions for Hik(ω) are obtained in appendix A.

5.3 Specifying general expressions for hik

Combining eq. (A.1) with eq. (5.12) and substituting them into eq. (5.10) leads to explicit

expressions for hik:

hS(ω, z) = ω + λ
(λ − E) − (λ + E)eλz

(λ − E) + (λ + E)eλz
, hud = hdu =

b̃ud

E
exp

∫ z

0
dth(ω, t) , (5.14)

hA =
bEM
A

8π2

∫ z

0
dt exp

(
−

∫ t

0
dt′h(ω, t′)

)
exp

∫ z

0
dth(ω, t) .

Denoting

λ/E = tanh β , (5.15)

we obtain that

h = − λ

tanh(λz/2 + β)
. (5.16)

Substituting it into eq. (5.14) leads to explicit expressions for hS , hA, hud:

hS = ω − λ

tanh(λz/2 + β)
, hud = hdu =

b̃ud

E

sinh2 β

sinh2
(
λz/2 + β

) , (5.17)

hA =
bEM
A

8π2

1

2λ sinh2
(
λz/2 + β

)
[
− λz − sinh 2β + sinh(λz + 2β)

]
.

Eq. (5.17) manifests that the breaking the SU(3)⊗U(1) symmetry of the electroweak gauge

group leads to the non-zero hA in contrast to the expressions eq. (A.7) obtained under the

assumption of the unbroken EW symmetry.

6. Coefficient functions of the non-singlets

In the present section we calculate the coefficient functions of the non-singlets. Again we

follow the pattern we used in the QCD framework: the coefficient functions are given by

the amplitudes F̃u, F̃d describing the same process at Q2 = µ2. IREE for them are similar
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to eq. (4.6), save two points: the first is the absence of the y -dependence because Q2 = µ2

for F̃u,d and the second is appearing initial contributions because they depend on µ at

y = 0:

(ω + ∂/∂z)F̃u = e2
uδu + huu(ω, z)F̃u + hud(ω, z)F̃d, (6.1)

(ω + ∂/∂z)F̃d = e2
dδd + hdu(ω, z)F̃u + hdd(ω, z)F̃d .

The factors δu, δd in eq. (6.1) stand for the initial quark densities in the ω -space. As

the anomalous dimensions hik have been found in the previous section (see eq. (5.17)), we

can solve eq. (6.1). Our strategy is to find a general solution to eq. (6.1) and after that

to specify it with using the matching to the other auxiliary amplitudes φu,d of the same

process, however obtained under the assumption of the unbroken SU(2)⊗U(1) symmetry:

F̃u|z=0 = φu, F̃d|z=0 = φd . (6.2)

In subsection A we obtain the general solution to eq. (6.1) in terms of the auxiliary am-

plitudes φA, φS . We calculate them in subsection B. It allows us to obtain the explicit

expressions for amplitudes F̃u,d in subsection C.

6.1 General solution to eq. (6.1)

Introducing the symmetrized combinations

F̃S = F̃u + F̃d, F̃A = F̃u − F̃d, (6.3)

we can rewrite eq. (6.1) in the symmetrical form:

∂F̃S/∂z = (e2
uδu + e2

dδd) +

(
− ω +

1

2
hS(ω, z)

)
F̃S + hud(ω, z)F̃S +

1

2
hA(ω, z)F̃A, (6.4)

∂F̃A/∂z = (e2
uδu − e2

dδd) +

(
− ω +

1

2
hS(ω, z)

)
F̃A − hud(ω, z)F̃A +

1

2
hA(ω, z)F̃S .

It is easy to write down a general solution to eq. (6.4) in terms of integrals of hik. However,

the expressions for hik are rather complicated, which makes scarcely possible performing

those integrations. Instead, we obtain an approximative solution to eq. (6.4), having noticed

that according to eq. (5.17) hS ≫ hA, hud. It gives us the right to drop the term hAF̃A in

the first of eq. (6.4). After that we arrive at the following results:

F̃S =

[
φS(ω) + cS(ω)

∫ z

0
dte−Ψ(ω,t)

]
eΨ(ω,z) , (6.5)

F̃A =

[
φA(ω)+cA(ω)

∫ z

0
dte−Ψ(ω,t)+

φS

2

∫ z

0
dthA(ω, t)+

cS

2

∫ z

0
dthA(ω, t)

∫ t

0
dve−Ψ(ω,v)

]
eΨ(ω,z)

where cS = e2
uδu + e2

d δd, cA = e2
uδu − e2

d δd and

Ψ(ω, z) =

∫ z

0
dt

[
− ω +

1

2
hS(ω, t)

]
= −ωz

2
− ln

(
sinh(λz/2 + β)

sinhβ

)
. (6.6)

Obviously, F̃S = φS and F̃A = φA at z = 0 in accordance with the matching of eq. (6.2).

Now we should find φS,A in order to specify eq. (6.5).
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6.2 Amplitudes φu,d

Amplitudes φu,d describe the forward Compton scattering off u and d -quarks under the

assumption of unbroken EW symmetry and with the photon being on-shell. Obviously,

they obey the following IREE:

ωφu = e2
uδu + Huuφu + Hudφd , (6.7)

ωφd = e2
d δd + Hduφu + Hddφd ,

with the obvious solution:

φS ≡ φu + φd =
cS

ω − Huu − Hud
, φA ≡ φu − φd =

cA

ω − Huu + Hud
. (6.8)

We have used in eq. (6.8) that Huu = Hdd .

6.3 Specifying the general solutions for F̃S,A

When φA and φS are known, the general expressions in eq. (6.5) can be specified:

F̃S = cS

[
e−ωz/2 sinhβ

(ω − Huu − Hud) sinh(λz/2 + β)
+

4 sinh(λz/4) cosh(λz/4 + β − ϕ)√
ω2 − λ2 sinh(λz/2 + β)

]
, (6.9)

F̃A = cA

[
e−ωz/2 sinhβ

(ω − Huu + Hud) sinh(λz/2 + β)
+

4 sinh(λz/4) cosh(λz/4 + β − ϕ)√
ω2 − λ2 sinh(λz/2 + β)

]

+
cS

2

e−ωz/2

sinh(λz/2 + β)
·
[

sinhβ

(ω − Huu − Hud)

∫ z

0
dt hA(ω, t)

+
4√

ω2 − λ2

∫ z

0
dt hA(ω, t) eωt/2 sinh(λt/4) cosh(λt/4 + β − ϕ)

]
,

where we have used the notation

λ/ω = tanh ϕ . (6.10)

7. Explicit expressions for the electroweak amplitudes Fu,d

In the previous sections we obtained explicit expressions for the electroweak anomalous

dimensions hik and the auxiliary amplitudes F̃u,d . Therefore, we can now find solutions

to eq. (4.6) for amplitudes Fu,d . As eq. (4.6) is quite similar to eq. (6.1), solving it can be

done in the same way. Again it is convenient to introduce the symmetrized notations

FS = Fu + Fd , FA = Fu − Fd (7.1)
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and express the solution in terms of them. Obviously,

FS(ω, z−y, z)=F̃S(ω, z − y)eΨ(ω,z)−Ψ(ω,(z−y)) (7.2)

= cS(ω)
e−ωz/2

sinh(λz/2 + β)

[
sinhβ

ω − Huu − Hud
+

∫ z−y

0
dteωt/2 sinh(λt/2 + β)

]
,

FA(ω, z−y, z)=

[
F̃A(ω, z−y)+

1

2

∫ z

z−y
dthA(ω, t)FS(ω, z−y, t)e−Ψ(ω,t)+Ψ(ω,z−y)

]
eΨ(ω,z)−Ψ(ω,z−y)

=
e−ωz/2

sinh(λz/2 + β)

[
cA

(
sinhβ

ω − Huu + Hud
+

∫ z−y

0
dteωt/2 sinh(λt/2 + β)

)

+
cS

2

(
sinhβ

ω−Huu−Hud

∫ z

0
dthA(t)+

∫ z−y

0
dthA(t)

∫ t

0
dueωu/2 sinh(λu/2+β)

+

∫ z

z−y
dthA(t)

∫ z−y

0
dueωu/2 sinh(λu/2 + β)

)]

where F̃S and F̃A are defined in eq. (6.9) and hA is given by eq. (5.17). We remind that

cS = e2
uδu + e2

d δd and cA = e2
uδu − e2

d δd.

8. Expressions for the non-singlet structure functions

Now we can write down explicit expressions for the non-singlet structure functions including

the total resummation of QCD and EW double-logarithmic contributions. We express the

non-singlet structure function fu of u -quark and the non-singlet structure function fd of

d -quark in terms of their symmetrized combinations fS and fA:

fS = fu + fd , fA = fu − fd . (8.1)

Combining eqs. (2.6) and (7.2) leads us to the following expressions:

fS =
1

2

∫ ı∞

−ı∞

dω

2πı

(
s

µ2

)ω

FS(ω, z, y) , (8.2)

fA =
1

2

∫ ı∞

−ı∞

dω

2πı

(
s

µ2

)ω

FA(ω, z, y) .

The Mellin amplitudes FS,A in eq. (8.2) are given by eq. (7.2). When the non-singlet

structure functions fu, fd are calculated in the QCD framework, the difference between

them, fA 6= 0, only if cA = e2
uδu − e2

d δd 6= 0. Including the EW corrections changes

the situation cardinally. Indeed, eq. (7.2) manifests that the expression for fA includes

the contribution proportional to cA and, in addition, the contribution proportional to

cS = e2
uδu + e2

d δd. The latter contribution arises because of mixing u and d -quarks

through W -boson exchanges. It means that, with the EW corrections accounted for,

fu 6= fd even if cA = 0. We remind that eqs. (8.2) describe fu and fd in the region (4.4).

9. Impact of the EW double-logarithms on the non-singlet intercepts

Let us consider the small-x asymptotics of f
(±)
u and f

(±)
d . When they are calculated in

the QCD framework, they are identical, save the difference between e2
uδu and e2

dδd, and
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given by eq. (2.20). Accounting for the EW DL contributions keeps the Regge form of

the asymptotics but changes the QCD intercepts ∆
(±)
QCD for the new ones which we denote

∆(±). According to eq. (2.21), the intercepts are the rightmost singularities of FS,A in

eq. (8.2) The leading singularity is the square root branching point in eq. (A.8):

(ω2 − 4buu/(8π2))2 − 16(bud/(8π
2))2 = 0 . (9.1)

The terms buu, bud in eq. (9.1) are defined in eq. (A.2). They depend on the signatures,

so from now on we should once more write explicitly the signature superscripts ”± ”. It is

interesting to note that eq. (9.1) corresponds to the unbroken SU(3)⊗ SU(2)⊗U(1) gauge

symmetry and therefore can be rewritten in the following way:

ω2 =
2

π

[
A(ω)CF + αSU(2)C

′

F + αU(1)(Y/2)2
]

+
D(±)

2π2
(9.2)

where αSU(2) = α/ sin2 θW , αU(1) = α/ cos2 θW ; then, C ′

F = 3/4, N ′ = 2, Y = 1/3 and

D(±) = D
(±)
QCD + ζ

2α2
SU(2)C

′

F

ω2N ′
− z

4α2
U(1)Y

4

16ω2
(9.3)

−
4αSU(2)CF C ′

F

b

[ ∫
∞

0
dρe−ωρ

(
ρ(ρ + η)

(ρ + η)2 + π2
∓ ρ

ρ + η

)
+ ζeωη

∫
∞

−1
dte−ωηt ln t

]

−
4αU(1)CF Y 2

4b

[ ∫
∞

0
dρe−ωρ

(
ρ(ρ + η)

(ρ + η)2 + π2
∓ ρ

ρ + η

)
+ ζeωη

∫
∞

−1
dte−ωηt ln t

]

−ζ
8αSU(2)αU(1)C

′

F Y 2

4ω2
.

In eq. (9.3) we have denoted ζ = [1 ∓ 1] .

When αs is assumed fixed, eq. (9.2) looks more simple:

ω2 − a − d(±)/ω2 = 0 , (9.4)

with

a =
8αs

3π
+

3α

2π sin2 θW
+

α

18π cos2 θW
, d(+) = 0 , (9.5)

d(−) =
1

2π2

[
8

9
α2

s−8
αsα

sin2 θW
− 8

27

αsα

cos2 θW
+

3

4

α2

sin4 θW
− 1

6

α2

sin2 θW cos2 θW
− 1

324

α2

cos4 θW

]
.

Eq. (9.4) can easily be solved analytically, the solutions, ω
(±)
0 are

ω
(+)
0 =

√
a , ω

(−)
0 =

√
(a +

√
a2 + 4d(−))/2 . (9.6)

On the contrary, eq. (9.2) cannot be solved analytically. Numerical solutions to eq. (9.2)

depend on η and their maximums which we call the intercepts4 are

∆(+) = 0.373 , ∆(−) = 0.354 , (9.7)

4See ref. [15, 16] for detail.
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while the QCD intercepts ∆
(±)
QCD obtained in ref. [15] are

∆
(+)
QCD = 0.385 , ∆

(−)
QCD = 0.423 . (9.8)

However, the QCD intercepts of eq. (9.8) include both DL and single-logarithmic (SL)

contributions. When, in addition to DL terms, only the SL terms contributing to αs are

taken into account and other SL terms are neglected, the QCD non-singlet intercepts ∆̃
(±)
QCD

differ from ∆
(±)
QCD:

∆̃
(+)
QCD = 0.346 , ∆̃

(−)
QCD = 0.389 . (9.9)

Therefore, the impacts ǫ
(±)
QCD of the SL QCD corrections on the non-singlet intercepts are

ǫ
(+)
QCD =

∆
(+)
QCD − ∆̃

(+)
QCD

∆̃
(+)
QCD

≈ 11% , ǫ
(−)
QCD =

∆
(−)
QCD − ∆̃

(−)
QCD

∆̃
(−)
QCD

≈ 9% . (9.10)

On the other hand, impacts ǫ(±) of the DL EW corrections on the DL QCD intercepts

∆̃
(±)
QCD are of the same size:

ǫ(+) =
∆(+) − ∆̃

(+)
QCD

∆̃
(+)
QCD

≈ 8% , ǫ(−) =
∆(−) − ∆̃

(−)
QCD

∆̃
(−)
QCD

≈ −9% . (9.11)

Confronting eq. (3.10) to eq. (9.11) manifests that the impact of all EW DL corrections

on the non-singlet intercepts is much greater than the impact of the electromagnetic DL

corrections. It also interesting that EW DL corrections work opposite ways: they increase

∆
(+)
QCD and decrease ∆

(−)
QCD, which makes smaller the difference between the asymptotics

of the non-singlets F1 and g1. A qualitative explanation to that can be easily found from

considering eq. (9.6): the expression for a in eq. (9.5) manifests that adding the EW terms

(all they are positive) to the QCD term 8αs/3π increases a and therefore increases ω
(+)
0

compared to its QCD value
√

8αs/3π. In contrast, there is an interplay between the

increase of a and decrease of d(−) in the expression for ω
(−)
0 . Indeed, the QCD term 8α2

s/9

in the expression for d(−) is suppressed by the negative EW contributions (the largest of

them, the second term, is ≈ −40ααs). It means that
√

a2 + 4d(−) < a and therefore

ω
(−)
0 < ω

(+)
0 .

10. Conclusion

We have considered the interplay between the QCD and EW radiative corrections to the

non-singlet structure functions f (±) in the double-logarithmic approximation. We ac-

counted for the running QCD coupling effects but kept the electroweak couplings fixed.

Accounting for the running EW couplings effects can be done easily. We have shown that

the EW DL corrections can lead to qualitatively new phenomena which are absent in the

QCD context. We have considered the EW impact on the non-singlet structure functions

f (±) at small x where accounting for DL contributions is known to be absolutely necessary.

– 18 –



J
H
E
P
0
4
(
2
0
0
8
)
0
6
8

In order to calculate f (±) taking into account both QCD and EW corrections in the DLA,

we applied the same method of composing Infrared Evolution Equations that we had used

for calculating f (±) in QCD. The EW couplings to quarks are sensitive to the quark fla-

vors, so the Q2 and x -evolutions of u and d -quarks are different. Besides, exchanges with

virtual W -bosons mix u and d -quarks. So, accounting for the EW corrections changes

the QCD evolution equation of eq. (2.19) for the system of more involved equations in

eq. (4.6). Instead of two non-singlet anomalous dimensions H
(±)
QCD in eq. (2.15), eq. (4.6)

involves eight of them: H±

ik , with i, k = u, d. They obey the system of non-linear differ-

ential evolution equations obtained in eq. (5.1). The approximative solutions to eq. (5.1)

were obtained in eqs. (5.17). They were used to obtain the explicit expressions of eq. (8.1)

for the non-singlet structure functions fu and fd in the kinematic region eq. (4.4). Be-

sides, the expressions for H±

ik in eq. (8.1) can also be used to obtain amplitudes M±

ik of the

forward annihilation of quark-antiquark pairs with flavor i into the quark-antiquark pairs

with flavor k: M±

ik = 8π2H±

ik .

In the QCD context, the only difference between the non-singlet structure functions fu

and fd is reduced to the difference in their initial densities e2
uδu and e2

d δd , whereas their

coefficient functions and anomalous dimensions are identical. In contrast, eqs. (8.1), (7.2)

manifest that with the EW corrections taken into account, fu−fd 6= 0 even if e2
uδu = e2

d δd .

Eqs. (8.1), (7.2) can also be used for estimating the x and Q2 -dependence of the asymmetry

Aud(x,Q2) =
fu(x,Q2) − fd(x,Q2)

fu(x,Q2) + fd(x,Q2)
(10.1)

in the kinematic region eq. (4.4). The small-x asymptotics fu and fd are of the Regge type.

They have identical intercepts but different coefficients. Their intercepts are presented in

eq. (9.7). It demonstrates that the EW corrections change the values of the QCD intercepts

obtained in ref. [15] and reproduced in eq. (9.8). It is also interesting to notice that DL

contributions of non-ladder Feyman graphs produce opposite influence on the values of

the non-singlet intercepts: In the QCD framework, the intercept ∆
(+)
QCD of the non-singlet

contribution to the structure functions F1,2 is less than the intercept ∆
(−)
QCD of the non-

singlet contribution to g1. Eq. (9.7) shows that accounting for the EW corrections reverses

this situation. Then, eqs. (9.7)–(9.9) manifest that the impact of DL EW corrections on

the non-singlet intercepts is comparable with the impact of the sub-leading, i.e. single-

logarithmic QCD contributions and reaches ≈ 11%. As the intercept is the exponent in

the expressions ∼ s∆ for the Regge asymptotics, the 11% change of the intercept due to

the EW contributions is quite substantial. Finally, we would like to stress that similar

incorporating EW corrections into the QCD expressions for the flavor singlet structure

functions at small x should bring really small impact because the small-x behavior of the

singlets is mostly controlled by gluon contributions.
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A. Anomalous dimensions at the unbroken EW gauge symmetry

Contrary to the differential equations eqs. (5.1), the IREE for Hik are algebraic because

Hik do not depend on z:

ωH(±)
uu =b(±)

uu /(8π2)+(H(±)
uu )2+H

(±)
ud H

(±)
du , ωH

(±)
ud =b

(±)
ud /(8π2)+H(±)

uu H
(±)
ud +H

(±)
ud H

(±)
dd ,

ωH
(±)
du =b

(±)
du /(8π2)+H

(±)
du H(±)

uu +H
(±)
du H

(±)
dd , ωH

(±)
dd =b

(±)
dd /(8π2)+(H

(±)
dd )2+H

(±)
ud H

(±)
du

(A.1)

where b
(±)
ik generalize bEM to the case of the massless EW bosons. Similarly to eq. (3.5)

they can be represented as the sum

b
(±)
ik = δik b

(±)
QCD + aik + D

(±)
ik . (A.2)

Term b
(±)
QCD in eq. (A.2) is defined in eq. (2.16), aik can easily be obtained from eq. (3.6),

adding to aEM the Z and W -boson couplings:

auu = add = 4παQ2
u + g2

uZ = 4π
α

sin2 θW

(1 + Y 2 tan2 θW )

4
, aud = adu =

g2

2
=

4πα

2 sin2 θW
(A.3)

and D
(±)
ik are generalizations of D

(±)
EM defined in eq. (3.7). It is convenient to represent D

(±)
ik

in the following way (cf eq. (3.7)):

D(±)
uu = D

(±)
dd = − 4αCF

b sin2 θW

[
(1 + Y 2 tan2 θW )

4
[1 ∓ 1]eωη

∫
∞

−1
dte−ωηt ln t (A.4)

+

∫
∞

0
dρe−ωρ

(
(3+Y 2 tan2 θW )

4

ρ(ρ+η)

(ρ+η)2+π2
∓ (1+Y 2 tan2 θW )

4

ρ

ρ+η

)]

− 4α2

ω2 sin4 θW

[
[1 ∓ 1]

(1 + Y 2 tan2 θW )2

16
+

(−1 + Y 2 tan2 θW )

8

]
,

D
(±)
ud = D

(±)
du = − 2αCF

b sin2 θW
[1 ∓ 1]eωη

∫
∞

−1
dte−ωηt ln t ± 2αCF

b sin2 θW

∫
∞

0
dρe−ωρ ρ

ρ + η

− 4α2

ω2 sin4 θW
[1 ∓ 2]

[
(−1 + Y 2 tan2 θW )

8

]
.

When αs is fixed, the expressions for D
(±)
uu and D

(±)
dd look more simple and instead of

eq. (A.4)) we obtain:

D(±)
uu = D

(±)
dd = − 8ααsCF

ω2 sin2 θW

(3 + Y 2 tan2 θW )

4
[1 ∓ 1] (A.5)

− 4α2

ω2 sin4 θW

(1 + Y 2 tan2 θW )2

16
[1 ∓ 1] − 4α2

ω2 sin4 θW

(−1 + Y 2 tan2 θW )

8
,

D
(±)
ud = D

(±)
du = − 2ααsCF

ω2 sin2 θW
[1 ∓ 1] − 4α2

ω2 sin4 θW
[1 ∓ 2]

[
(−1 + Y 2 tan2 θW )

8

]
.
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Let us comment on eqs. (A.4), (A.5). The terms ∼ 1/b in eq. (A.4) (corresponding to

the term ∼ ααs in eq. (A.5) where αs is fixed) come from the interference of the QCD

and EW DL contributions. The next term in each of eqs. (A.4), (A.5) accumulate the DL

contributions of virtual soft neutral EW bosons: photons and Z-bosons. A part of those

terms in eq. (A.4) (and all of them in eq. (A.5)) is proportional to the signature factor

[1∓ 1] and therefore vanish when the signature is positive. In other words, the non-ladder

DL contributions to the amplitudes with the positive signature cancel each other totally

when couplings are fixed5 but such a cancelation is not total when all the couplings or

some of them are running. The presence of the last term in eqs. (A.4), (A.5) demonstrates

explicitly that accounting for the soft W -boson exchanges breaks such a cancelation for

D
(+)
ik even in the case when the couplings are fixed. However, when αs is kept fixed, the

total summation over flavors for D
(+)
ik of eqs. (A.5) leads to the zero contribution of the

non-ladder graphs:

D(+)
uu + D

(+)
ud + D

(+)
dd + D

(+)
du = 0 . (A.6)

Eq. (A.6) is quite similar to the QCD result for D
(+)
QCD with fixed αs obtained first in ref. [19]

because summation over flavors in eq. (A.5) is equivalent to summation over colors in QCD.

As bik are now fixed, we can solve eqs. (A.1). Combining eqs. (A.2), (A.3), (A.4) we see

that buu = bdd , bud = bdu and therefore eq. (A.1) reads that Huu = Hdd and Hud = Hdu .

After that eq. (A.1) can easily be solved:

Huu = Hdd =
1

2

[
ω − E

]
, (A.7)

Hud = Hdu =
b̃ud

E

where

b̃uu =
buu

8π2
, b̃ud =

bud

8π2
, E =

√√√√ω2 − 4b̃uu +
√

(ω2 − 4b̃uu)2 − 16b̃2
ud

2
. (A.8)
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